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In	silico	benchmark	datasets 

The	benchmark	datasets	consist	of	computationally	simulated	reads	with	varying	mixtures	of 
bacterial	species.	Specifically,	we	used	the	8	single	ended	unambiguously-mapped	datasets 
from	the	NIST	IMMSA	repository	previously	evaluated	in		(McIntyre	et	al.,	2017)	.		Six	of	these	
datasets		(“Buc12,”	“CParMed48,”	“Gut20,”	“Hou31,”	“Hou21,”	and	“Soi50”)	were	simulated	to 
reflect	distinct	microbial	habitats	based	on	real	human	or	environmental	metagenomes	and 
contain	between	12	and	50	species	per	dataset.	The	seventh	(“simBA525”)	contains	525 
randomly	selected	species		(Ounit	and	Lonardi,	2016)		and	the	eighth	(“NYCSM20”)	contains	20 
species	representative	of	the	organisms	of	the	New	York	City	subway	system.	Simulation	of 
these	datasets	is	described	elsewhere		(Ounit	and	Lonardi,	2016)	. 
 
We	simulated	two	additional	datasets	to	represent	the	ATCC	Even	and	ATCC	Staggered	20 
species	microbiome	standards	available	from	ATCC	(ATCC	®	MSA-1003™	;	ATCC	® 
MSA-2002™).	The	ATCC	microbiome	standards	include	a	mix	of	20	bacterial	species	with 
varying	phenotypic	characteristics	found	in	the	human	microbiome.	Simulated	reads	were 
generated	using	the	ART	Illumina	read	simulator	modified	to	generate	exact	numbers	of	reads 
per	input	fasta	file.	Program	parameters	used	were:	HiSeq	2500	error	model	(HS25),	paired	end 
reads	with	length	150	bp	and	insert	size	of	400	with	standard	deviation	of	50	bp.	Apart	from	the 
ATCC	Staggered	dataset,	the	species	abundance	profiles	in	the	rest	of	the	datasets	were	evenly 
distributed	among	all	species.	The	ATCC	Staggered	mixture	had	species	abundances	ranging 
four	orders	of	magnitude,	comprising	between	0.02%-18%	of	the	sample.	For	all	of	the	ATCC 
and	NIST	samples,	the	sequences	were	simulated	from	the	genomic	DNA	of	component 
bacteria	species. 
 
The	CAMI	benchmarking	datasets	include	1	low	complexity	metagenome	containing	bacteria, 
and	viruses,	2	medium	complexity	metagenomes	containing	archaea,	bacteria	and	viruses,	and 
5	high	complexity	metagenomes	containing	archaea	and	bacteria.	These	metagenomes	contain 
only	about	30-40%	of	classified	abundance	from	known	taxa	in	these	kingdoms.	The	rest	of	the 
abundance	in	these	samples	is	characterized	by	added	plasmids,	novel	new	species,	genera 
and	other	taxa	at	higher	ranks,	or	simulated	evolved	strains	from	existing	reference	genomes. 
These	short	reads	were	simulated	as	described	in		(Sczyrba	et	al.,	2017)	.	There	were	two 
additional	sample	datasets	with	identical	abundance	profiles	as	the	two	medium	complexity 
metagenomes	but	with	a	simulated	insert	size	of	5000bp	instead	of	270bp	to	simulate	mate-pair 
libraries.	We	excluded	these	long	insert	libraries	because	they	are	less	commonly	used	for	bulk 
sequencing	of	metagenomes	and	are	inconsistent	with	the	rest	of	our	simulated	datasets.	Since 
the	ground	truth	gold	standard	profiles	of	the	CAMI	samples	are	genome-length	corrected,	we 
instead	generate	ground	truth	profiles	based	on	the	proportions	of	taxa	classified	by	individual 
reads. 
 

https://paperpile.com/c/l1ixNR/SypZM
https://paperpile.com/c/l1ixNR/Jlr9t
https://paperpile.com/c/l1ixNR/Jlr9t
https://paperpile.com/c/l1ixNR/sxZ1c


Simulated	reads	for	the		hg38		misclassification	test	were	created	using		wgsim		v1.8	with	default 
parameters,	for	a	total	of	10	million	paired-end	reads	from	the	GRCh38.p12	assembly	of	the 
human	genome. 

In-vitro	ATCC	Even	sequencing 

The	ATCC	20	Strain	Even	Mix	Genomic	Material	(ATCC®	MSA-1002™)	in-vitro	mixture	was 
resuspended	in	PBS	and	then	extracted	using	the	MagMAX™	Pathogen	RNA/DNA	Kit	(Thermo 
Cat.	No.	4462359).	A	corresponding	NTC	sample	was	extracted	using	DNase/RNase	clean 
water.	The	extracted	RNA	underwent	double	stranded	cDNA	synthesis	using	random	hexamers. 
Sequencing	libraries	were	prepared	as	previously	described	in		(Gire	et	al.,	2014)	.	The	extracted 
DNA	and	cDNA	were	used	as	input	for	Nextera	XT	library	construction	with	1	ng	input	(c)DNA 
and	16	cycles	of	Nextera	XT	PCR	with	two	replicates	each.	The	resulting	tagmented	libraries 
pooled	at	equal	4	nM	concentrations	as	analyzed	by	a	TapeStation	D1000	High	Sensitive	tape. 
The	libraries	were	paired-end	sequenced	on	a	MiSeq	using	a	MiSeq	V2	Micro	kit	with	300 
cycles. 
 

Database	construction 

The	RefSeq	Complete	Genomes	(RefSeq	CG)	database	was	constructed	using	RefSeq 
assemblies	at	the	“Complete	Genome”	assembly	quality	comprising	254	Archaea	genomes 
representing	201	species,	9434	Bacteria	genomes	representing	3130	species,	and	7530	Viral 
genomes	representing	7346	species		(Nasko	et	al.,	2018)	. 
 

Performance	metrics 

The	most	important	metrics	for	metagenomic	classification	are	precision	and	recall.	These 
metrics	are	chosen	because	they	focus	on	the	positive	class	of	identified	taxa,	and	typically	not 
much	can	be	said	about	the	negative	class	which	contains	unknown	unknowns.	Precision	is 
defined	as	the	proportion	of	true	classified	taxa	over	all	classified	taxa.	Recall	is	the	proportion 
of	correctly	classified	abundances	over	all	truth	abundances.	The	precision-recall	curve	was 
generated	with	abundance	threshold	as	the	classification	boundary.	To	assess	the	area	under 
the	precision-recall	curve,	the	average	precision	score	(APS)	sums	the	stepwise	marginal	gain 
in	precision-recall,	whereas	the	area	under	the	precision-recall	curve	(AUPR)	is	a	function	which 
approximates	the	area	using	the	trapezoidal	rule	on	the	plotted	points.	The	precision-recall 
curve	was	calculated	using	scipy’s	precision_recall_curve,	while	APS	and	AUPR	were 
measured	using	the	average_precision_score	and	auc	functions	in	sklearn	v0.19.2		(Pedregosa 
et	al.,	2011)	.	While	APS	and	AUPR	are	normally	quite	similar,	a	quirk	in	scipy’s 
precision_recall_curve	inserts	a	final	precision-recall	coordinate	at	recall	=	1.0	with	precision 
equal	to	the	last	precision.	Since	this	falsely	indicates	that	the	classifier	eventually	identified	all 
of	the	truth	taxa,	we	instead	set	the	precision	to	0	at	the	highest	observed	recall	onward	to 
adjust	the	AUPR	calculation	downward.	Additionally,	when	multiple	precision	points	are	present 
for	a	single	recall	value,	we	take	the	maximal	precision	value	to	remove	the	effects	of	random 

https://paperpile.com/c/l1ixNR/vqi8k
https://paperpile.com/c/l1ixNR/GQSNj
https://paperpile.com/c/l1ixNR/Ugqm9
https://paperpile.com/c/l1ixNR/Ugqm9


ordering	of	taxa.	Performance	metrics	that	require	the	calculation	of	false	negatives	are	not 
assessed	because	false	negatives	are	poorly	defined	in	real-world	metagenomic	samples.	The 
universe	of	unknown	unknowns	cannot	be	known	in	a	biological	context.	Therefore	metrics	such 
as	the	ROC	curve	and	area	under	the	ROC	curve	were	not	utilized	because	they	are	less 
relevant	for	real-world	biological	samples. 
 

Abundance	profile	similarity 

To	assess	the	quality	of	the	abundance	profiles,	norms	were	calculated	between	the	vector	of 
classified	species	and	the	ground	truth	abundance	profiles.	To	generate	the	abundance	profile 
vector,	each	individual	species	sum	is	divided	by	the	total	abundance	classified	at	a	given 
taxonomic	rank	-	either	species	or	genus.	Therefore	each	vector	should	have	normalized 
magnitude	of	1.	To	generate	the	2D	matrix	of	method	similarity,	pairwise	distances	were 
computed	between	the	species	abundance	profiles	for	each	classification	method.	The	median 
L2	distance	across	the	benchmarking	samples	was	taken	as	the	pairwise	similarity	for	each 
(	method1	,		method2	)	pair.	The	hierarchical	clustering	was	performed	using	the	Nearest	Point 
algorithm	on	the	median	L2	distances.	The	L2	distance	and	hierarchical	clustering	for	all 
comparisons	were	calculated	using	scipy	v1.1.0		(Jones	et	al.,	2001) 

Individual	classifier	quirks 

The	classifiers	frequently	had	individual	quirks	complicating	cross-classifier	comparisons.	A 
common	individual	classifier	quirk	is	not	outputting	the	unclassified	abundance.	For	example, 
GOTTCHA	classifies	bacteria	and	viruses	with	separate	abundance	reports	which	must	be 
merged,	while	PathSeq	and	Bracken	performs	genome-length	normalization	for	abundances 
even	though	we’re	evaluating	based	on	read	count	abundances.	Many	methods	did	not	output	a 
specific	abundance	profile,	so	a	profile	was	generated	from	the	read-level	taxon	hits	by 
assigning	to	the	LCA	taxon	of	all	hits	for	each	individual	read,	then	cumulatively	summing	up	the 
taxonomic	tree. 
 

Supporting	software	used 

Snakemake	v5.2.2	was	used	to	manage	the	workflow	and	benchmarking	of	the	classifiers 
(Köster	and	Rahmann,	2012)	.	Duplicate	content	was	estimated	using	a	bugfixed	version	of 
cd-hit-dup		v4.6.1.	Jupyter	notebook	v5.6.0		(Kluyver	et	al.,	2016)	,	pandas	0.23.4		(McKinney, 
2010)		and	matplotlib	v2.2.3		(Hunter,	2007)		on	Python	v3.5.4	was	used	for	analysis	and	plotting. 
The	necessary	Python	software	was	installed	via	miniconda	v4.4.10	and	the	bioconda	package 
channel		(Grüning	et	al.,	2018)	. 
 

Computational	Environment 

The	classifiers	were	benchmarked	on	AWS’s	EC2	platform	using	the	r4.8xlarge	instance	type. 
This	instance	utilizes	Intel	Xeon	E5-2686	v4	processors	with	16	cores	(32	HyperThreaded 

https://paperpile.com/c/l1ixNR/dyabQ
https://paperpile.com/c/l1ixNR/sJytP
https://paperpile.com/c/l1ixNR/cP5Mq
https://paperpile.com/c/l1ixNR/M2ioD
https://paperpile.com/c/l1ixNR/M2ioD
https://paperpile.com/c/l1ixNR/dGmvJ
https://paperpile.com/c/l1ixNR/MAiZ6


cores)	has	240	Gb	of	memory,	and	has	support	for	all	instruction	set	extensions	used	by	the 
tested	classifiers	for	optimized	runtime	performance.	For	some	classifiers,	database	creation 
required	more	than	240	Gb	of	memory.	These	classifiers	were	benchmarked	on	the	r4.16xlarge 
instance	type	with	480	Gb	of	memory.	Disk	storage	was	comprised	of	st1	EBS	instances,	which 
are	backed	by	hard	disk	drives.	While	st1	drives	have	poor	random	read/write	performance,	they 
have	high	linear	throughput	which	match	the	workloads	of	metagenomics	tools	-		they	primarily 
load	large	databases	into	memory	and	sequentially	process	large	FASTQ	files.	EBS	instances 
have	varying	IO	performance	by	drive	size,	which	slightly	affected	the	speed	of	database	loading 
for	certain	classifiers	such	as	Kraken.	The	computational	time	benchmark	was	measured	by 
running	a	single	instance	of	each	classifier	provided	all	32	cores	and	memory,	even	if	the 
classifier	cannot	properly	utilize	these	resources	with	efficient	parallelization	and	could	have 
higher	throughput	if	processed	concurrently	with	other	samples.  
 

Individual	Classifier	Descriptions 

A	description	of	all	classifiers,	as	well	as	example	simplified	commands	used	with	paired-end 
input	and	quirks	of	each	method	is	listed	below.	Filenames	in	commands	are	templated	in	the 
curly	braces	such	as:	{input},	{output},	{db}	representing	input	files,	output	files,	and 
database-related	options.  
 
Bracken	v1.0.0-9aaaec	is	an	add-on	that	utilizes	the	read	classification	output	from	standard 
Kraken		(Lu	et	al.,	2017)	.	It	re-estimates	the	taxonomic	abundance	profile	by	accounting	for	the 
uniqueness	of	the	reference	genomes	based	on	self-classification	of	its	reference	genomes, 
which	strongly	reduces	the	false-positive	rate	of	standard	Kraken	and	implicitly	normalizes	for 
genome	length.	Databases	were	constructed	using	their	respective	kraken	library	genomes	for 
the	default	and	RefSeq	CG	databases.		kraken-filter		was	used	to	filter	raw	classifications	at	the 
0.05	threshold. 
 
Bracken	command: 
est_abundance.py	-i	{input}	-k	{db}	-o	{output}	
	
Centrifuge	v1.0.4-91dfff	is	an	FM-index	approach	that	first	compresses	the	reference	genomes 
by	removing	redundant	segments	among	highly	similar	genomes		(Kim	et	al.,	2016)	.	It	searches 
for	exact	matches	of	at	least	22	bp,	and	the	query	search	is	restarted	each	time	after	a 
mismatch	occurs.	Instead	of	just	classifying	a	single	taxon	label	or	LCA	taxon,	each	matched 
segment	can	have	up	to	5	labels	applied.	Expectation	maximization	(EM)	is	performed	on	the 
raw	abundance	profiles	to	generate	a	finalized	abundance	profile.	The	default	database	selected 
was	the	compressed	database	from 
ftp://ftp.ccb.jhu.edu/pub/infphilo/centrifuge/data/p_compressed+h+v.tar.gz	containing	human, 
viruses,	and	compressed	bacteria/archaea	sequences	updated	2016/12/06. 
 
Centrifuge	command: 

https://paperpile.com/c/l1ixNR/3PEaY
https://paperpile.com/c/l1ixNR/J6tp3


centrifuge	-x	{params.db}	-1	{input.1}	-2	{input.2}	--report-file	
{output.report}	--threads	{threads}	|	pigz	-9	>	{output.data}	
	
CLARK	v1.2.5	is	a	method	similar	to	Kraken	which	uses	31bp	k-mers	to	classify	reads.	Instead 
of	storing	the	LCA	taxon	of	each	k-mer,	it	removes	non-unique	k-mers	(except	for	those	that 
occur	on	the	same	arm	of	a	chromosome)	and	rare	k-mers	to	reduce	the	noise	is	inherent	in 
using	raw	k-mers	for	classification		(Ounit	et	al.,	2015)	.	CLARK-S	is	a	further	extension	that 
utilizes	spaced	k-mers	with	wildcard	gaps	instead	of	contiguous	31bp	k-mers.	The	default 
database	contains		RefSeq	bacteria	and	viruses	and	was	constructed	on	2018/04/25. 
 
CLARK	command: 
CLARK	-n	{threads}	{db}	-P	{input}	-R	{output}	
 
CLARK-S	command 
CLARK-S	-n	{threads}	{db}	-P	{input}	-R	{output}	
	
DIAMOND	v0.9.21-131bd4	is	a	BLASTx-like	aligner	that	takes	DNA	query	sequences	and	aligns 
them	to	a	protein	database,	typically	the	nr	database	used	by	BLASTx		(Buchfink	et	al.,	2015)	.	To 
improve	on	the	speed	of	BLASTx	while	maintaining	sensitivity,	it	uses	relatively	long	spaced 
seeds	with	weight	of	12	and	lengths	of	15-24	letters	by	default.	Instead	of	using	the	full	amino 
acid	alphabet,	it	uses	a	reduced	alphabet	of	only	11	letters.	Additionally	it	does	a 
double-indexed	sort	and	linear	iteration	of	the	seed	locations	in	both	the	query	and	reference 
database	to	improve	cache	locality.	DIAMOND	does	not	natively	handle	paired-end	reads,	so 
paired	ends	were	considered	as	separate	reads	in	the	fasta	input	file.	After	taxonomic 
assignment	of	each	paired	end,	an	additional	processing	step	was	run	to	compute	the	LCA 
taxon	of	the	two	paired	ends	and	reassigned	to	the	combined	read.	The	default	database 
selected	used	the	BLAST		nr		reference	from	2018/04/20. 
 
DIAMOND	command: 
diamond	blastx	--verbose	-p	{threads}	--outfmt	102	-q	{input}	-o	
{output.tax}	
	
GOTTCHA	v1.0c-e4067a	uses	databases	of	unique	24	length	k-mers	to	each	organism		(Freitas 
et	al.,	2015)	.	These	databases	are	specific	to	each	taxonomic	family	(such	as	species,	genus, 
family	etc),	and	have	variants	with	human	k-mers	removed.	Query	reads	are	broken	into	30	bp 
fragments	and	searched	for	maximal	exact	matches	using	bwa	mem	to	the	reference	database. 
The	default	databases	for	bacteria	and	viruses	at	the	species	and	genus	levels	were 
downloaded	from	ftp://ftp.lanl.gov/public/genome/gottcha/,	version	v20150825	with	the 
xHUMAN3x	variant.	Since	GOTTCHA	does	not	generate	a	combined	abundance	of	bacteria	and 
viruses,	the	abundance	of	each	taxa	was	determined	by	dividing	the	total	sum	of	taxa	covering 
bp	by	the	cumulative	number	of	bp	covered	in	the	concatenated	bacteria	and	viral	reports. 
 
GOTTCHA	command: 

https://paperpile.com/c/l1ixNR/A1WqS
https://paperpile.com/c/l1ixNR/8Ylf9
https://paperpile.com/c/l1ixNR/jCb73
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gottcha.pl	--database	{db.bacteria}	--input	{input}	--mode	all	
--dumpSam	--prefix	{output}	--threads	{threads}	
gottcha.pl	--database	{db.viral}	--input	{input}	--mode	all	--dumpSam	
--prefix	{output}	--threads	{threads}	
	
Kaiju	v1.7.0	is	a	DNA	to	protein	classifier	that	relies	on	the	FM-index	to	reduce	memory 
requirements		(Menzel	et	al.,	2016)	.	Six-frame	translated	query	sequences	are	first	split	into 
fragments	ending	with	putative	stop	codons	and	searched	for	maximal	exact	matches	(MEMs)	in 
the	FM-index.	Queries	are	taxonomically	assigned	to	the	longest	MEM,	or	to	the	LCA	taxon	if	it 
matches	multiple	taxons.	Kaiju	also	implements	a	greedy	search	mode	which	allows	some 
mismatches	at	the	left	end	of	fragments,	by	searching	backwards	in	the	BWT.	The	default 
database	used	the	BLAST		nr		reference	from	2018/04/20. 
 
Kaiju	command: 
kaiju	-t	{db.nodes}	-f	{db.fmi}	-i	{input.1}	-j	{input.2}	-o	{output}	
-z	{threads}	
	
Karp	v1.0-88c5b1	is	a	method	that	utilizes	the	Kraken	approach	of	matching	31	bp	k-mers	as	a 
first	step		(Reppell	and	Novembre,	2017)	.	Afterwards,	it	performs	local	alignment	and	likelihood 
estimation	based	on	the	read	qualities	encoded	in	the	input	FASTQ.	The	harp	filter	was	disabled 
and	likelihood	threshold	set	to	a	low	value	due	to	not	having	enough	classified	reads	on	our 
datasets	otherwise.	Finally,	it	performs	EM	on	the	abundance	profiles	to	generate	the	final 
species	profile.	The	default	database	was	constructed	using	bacteria	rRNA	sequences	from 
SILVA	release	132. 
	
Karp	command: 
karp	-c	quantify	--threads	{threads}	{db}	-f	{input.1}	-q	{input.2}	
--out	{output}	--like_thresh	19	--no_harp_filter	--collapse	
	
Kraken	v1.0-352e78	is	k-mer	based	classification	method	that	searches	for	31bp	k-mers	from 
the	query	sequence	in	a	precomputed	database	that	matches	k-mers	to	the	lowest	common 
ancestor	(LCA)	taxon	of	all	genomes	that	contain	that	taxon		(Wood	and	Salzberg,	2014)	.	The 
default	database	selected	includes	RefSeq	complete	bacterial	and	viral	genomes	constructed 
on	2018/05/13.	A	filtering	threshold	of	0.05	was	selected	due	to	it	showing	the	best 
precision/recall	by	the	authors’	own	measurements. 
 
Kraken	command: 
kraken	--threads	32	--fastq-input	--bzip2-compressed	
{input_1.fastq.bz2}	{input_2.fastq.bz2}	|	tee	>(pigz	--best	>	
{output.reads})	|	kraken-filter	--threshold	0.05	|	kraken-report	>	
{output.report}	
	

https://paperpile.com/c/l1ixNR/PCEfj
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Kraken2	v2.0.7-beta-fb4522	is	k-mer	based	classification	method	that	searches	for	35bp	k-mers 
from	the	query	sequence	in	a	precomputed	database	that	matches	k-mers	to	the	lowest 
common	ancestor	(LCA)	taxon	of	all	genomes	that	contain	that	taxon		(Wood	and	Salzberg, 
2014)	.	It	is	faster	than	Kraken	and	requires	less	memory,	but	has	a	slight	chance	of	false 
positive	classifications.	The	default	database	selected	includes	RefSeq	complete	bacterial	and 
viral	genomes	from	2018/05/13.	A	filtering	threshold	of	0.05	was	selected	due	to	it	showing	the 
best	precision/recall	by	the	authors’	own	measurements. 
 
Kraken2	command: 
kraken2	--threads	32	--fastq-input	--confidence	0.05	
--bzip2-compressed	{input_1.fastq.bz2}	{input_2.fastq.bz2}	--output	
{output.reads})	--report	{output.report}	
	
KrakenUniq	v0.4.8-70cd32	(formerly	named	KrakenHLL)	is	an	extension	on	the	standard	Kraken 
algorithm	which	outputs	additional	information	about	the	uniqueness	of	k-mers	assigned	to	each 
taxa		(Breitwieser	and	Salzberg,	2018)	.	Although	not	used	for	benchmarking,	this	additional 
information	can	be	used	to	filter	false-positive	calls	for	taxa	with	low	k-mer	uniqueness.	The 
default	database	containing	RefSeq	complete	archaea,	bacterial,	and	viral	genomes	was 
constructed	on	2018/04/25.  
 
KrakenUniq	command: 
krakenuniq	--preload	--db	{db}	--threads	{threads}	--paired	
--bzip2-compressed	--fastq-input	{input_1.fastq.bz2}	
{input_2.fastq.bz2}	--output	{output.reads}	--report-file	
{output.report}	
	
k-SLAM	v1.0-6cbf5a	is	a	k-mer	based	classification	method	that	first	queries	the	database	index	
using	32-bp	k-mers	and	performs	local	alignment	on	any	resultant	hits		(Ainsworth	et	al.,	2017)	.	
It	also	incorporates	specialized	handling	of	paired-end	reads	as	well	as	methods	to	differentiate	
between	alignments	to	regions	of	high	sequence	conservation.	The	default	database	is	created	
using	the	built-in		install_slam.sh		script	to	download	bacterial	and	viral	genomes	from	
RefSeq	on	2018/04/25.	
	
k-SLAM	command:	
SLAM	--db	{db}	--num-reads-at-once	50000	--output-file	{output}	
	
MegaBLAST	v2.7.1+	is	an	accelerated	version	of	BLAST	that	uses	longer	initial	seed	lengths	at 
28	nucleotides	compared	to	11	nucleotides	in	standard	BLASTn	to	reduce	the	number	of 
alignments	that	need	to	be	calculated		(Morgulis	et	al.,	2008)	.	Although	BLASTn	was	not 
evaluated	here	because	it	cannot	process	large	numbers	of	metagenomic	sequencing	reads	in	a 
reasonable	amount	of	time,	MegaBLAST	is	fast	enough	to	be	feasible	for	this	task.	It	still 
remains	the	slowest	DNA	classifier	overall.	The	option	of	maximum	10	HSPs	was	used	to 
reduce	the	number	of	hits	reported	for	the	same	subject	sequence.	BLAST	can	output	a	list	of 
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taxa	for	each	individual	BLAST	hit	for	a	query	sequence.	For	each	query	read,	hits	with	a 
minimum	bit	score	of	50	and	e-value	of	0.01	within	10%	of	the	best	hit	(in	terms	of	bit-score) 
were	kept.	The	LCA	taxon	of	all	the	kept	hits	was	taken	as	the	taxon	assignment	for	the 
sequence. 
 
MegaBLAST	command:	
blastn	-db	{db}	-out	{output}	-max_hsps	10	-num_threads	{threads}	
-task	megablast	-outfmt	"6	qseqid	sseqid	pident	length	mismatch	
gapopen	qstart	qend	sstart	send	evalue	bitscore	sgi	sacc	staxids	
sscinames	scomnames	stitle"	
 
MetaOthello	(git	rev.	15ded5)	is	a	fairly	unique	approach	that	relies	on	probabilistic	hashing	of 
k-mers		(Liu	et	al.,	2018)	.	The	database	is	constructed	with	two	hash	functions	calculated	on 
taxonomically	unique	k-mers	extracted	from	the	reference	database.	The	two	hash	functions 
index	into	arrays	which	are	bitwise	XOR’d	to	generate	the	taxon	integer	id.	Hash	collisions	of 
different	k-mers	to	the	same	taxa	would	lead	to	ambiguous	assignments	and	are	removed	from 
the	database.	K-mers	not	seen	during	database	construction	may	lead	to	spurious	taxon 
assignments	if	the	XOR’d	result	matches	a	valid	taxon	id.	This	probabilistic	approach	offers 
significant	memory	savings	over	other	k-mer	scanning	methods,	but	can	lead	to	spurious 
classifications.	Since	metaOthello	does	not	produce	an	abundance	profile,	individual	read 
classifications	at	the	species	and	genus	levels	were	divided	by	the	total	number	of	reads.	The 
default	database	was	downloaded	from 
https://drive.google.com/open?id=0BxgO-FKbbXRIa0Flc3Q4bWtycGM	containing	31-bp	long 
bacterial	k-mers. 
 
MetaOthello	command: 
classifier	{db}	{output.dir}	31	{threads}	fq	PE	{db.idmap}	{db.names}	
{input}	|	pigz	--stdout	-9	{output.reads}/taxo_assignment.txt	>	
{output}	
 
MetaPhlAn2	v2.6.0-06c962	is	marker	gene	alignment	approach	that	uses	precomputed 
customized	databases	containing	clade-specific	marker	genes		(Truong	et	al.,	2015)	.	Query 
reads	are	aligned	via	bowtie2	to	the	marker	genes.	Classification	speed	is	very	high	since	the 
reference	database	is	much	smaller	than	approaches	utilizing	full	genomes.	The	default 
database	version	is	the	v20	db. 
 
MetaPhlAn2	command: 
metaphlan2.py	--input_type	fastq	--nproc	{threads}	--bowtie2out	
{output.bowtie2out}	{db}	{input}	{output.report}	
	
MMseqs2	v3-be8f6			is	another	BLASTx	alternative	aligning	DNA	to	protein	sequences 
(Steinegger	and	Söding,	2017)	.	For	the	lookup	phase,	it	looks	for	two	consecutive	weight	7 
spaced	seed	matches	to	a	target	sequence.	These	two	seeds	have	to	be	positionally-consistent, 
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(on	the	diagonal	of	the	query/target	position	graph)	before	continuing	to	the	alignment	phase. 
MMseqs2	has	a	specialized	taxonomy	output	which	was	used	for	benchmarking.	MMseqs2	did 
not	have	any	special	handling	for	paired	end	reads	and	they	were	treated	as	separate 
sequences.	The	default	database	used	the	BLAST		nr		reference	from	2018/04/20. 
 
MMSeqs2	command: 
mmseqs2	createdb	{input}	{input.db}	
mmseqs2	taxonomy	{input.db}	{db}	{db.lca}	/tmpdir	
mmseqs2	createtsv	{input.db}	{db.lca}	{output.tsv}	
	
mOTUs2	v2.0.1	is	a	marker-based	method	that	compiles	a	large	variety	of	marker	genes	from 
multiple	biomes:	four	body	sites	and	the	ocean	biome.		(Milanese	et	al.,	2019)		This	set	of	marker 
genes	contains	3x	and	7x	the	known	and	unknown	species	from	mOTUs	version	1.	Query	reads 
are	aligned	using	bwa	mem	and	further	processed	to	generate	an	abundance	profile. 
 
mOTUs2	command: 
motus	profile	-pu	{input}	-o	{output.report}	-t	{threads}	
	
PathSeq	(GATK	v4.1.2)	is	a	pipeline	that	has	steps	for	host	(human)	read	depletion	and 
microbial	genome	read	alignment	using	bwa		(Walker	et	al.,	2018)	.	The	output	of	PathSeq 
reports	the	“score”	of	each	taxa	according	to	the	amount	of	read	evidence	present	for	each	taxa. 
This	score	is	normalized	by	genome	length,	unlike	most	other	classifiers,	and	PathSeq	does	not 
readily	provide	an	unnormalized	score.	The	taxa	abundance	was	taken	to	be	the	score	divided 
by	the	total	number	of	reads.	The	default	host	and	microbe	databases	were	downloaded	from 
ftp://	ftp.broadinstitute.org/bundle/pathseq/		corresponding	to	the	2017/12/19	versions	of	these 
databases.	Although	custom	images	can	be	constructed	for	the	microbial	reference	database,	it 
was	not	performed	for	this	analysis. 
 
PathSeq	command: 
gatk	PathSeqPipelineSpark	--input	{input}	--microbe-bwa-image	{db.bwa}	
--microbe-fasta	{db.microbe}	--taxonomy-file	{db.taxonomy}	
--scores-output	{output.report}	--output	{output.reads}	
	
Prophyle	v0.3.0.3-64f187	is	another	alignment	based	approach	that	propagates	k-mers	up	the 
taxonomic	tree	such	that	contigs	are	assembled	at	each	taxonomic	node		(Břinda	et	al.,	2017)	. 
These	node-specific	contigs	are	indexed	by	BWT	and	searched	using	a	BWA-like	algorithm		(Li, 
2013)	.		The	default	database	contains	RefSeq	bacteria,	plasmids,	and	viruses	constructed	on 
2017/11/14	. 
 
Prophyle	command: 
prophyle	classify	{db}	{input}	>	{output}	
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TaxMaps	v0.2.1-7e0ec7	is	an	FM-index	based	alignment	approach	that	uses	the	GEM	mapper 
(Corvelo	et	al.,	2018;	Marco-Sola	et	al.,	2012)	.	The	reference	sequences	are	first	processed	to 
classify	the	LCA	of	each	k-mer.	These	k-mers	are	extended	into	segments	that	share	the	LCA, 
where	are	used	to	generate	the	FM-index	used	by	the	GEM	mapper.	Combining	segments	that 
share	an	LCA	compresses	the	original	input	database.	The	default	database	was	RefSeq 
Complete	Bacteria/Archaea/Viral	genomes	300	bp	GEM	index	downloaded	from 
ftp://ftp.nygenome.org/taxmaps	and	updated	2018/03/15. 
 
TaxMaps	command:  
taxMaps	-f	{input}	-d	{db}	-c	{threads}	-t	{db.tax}	-p	sample	-o	
{output.dir}	
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Figure	S1.		Baseline	precision,	recall,	and	F1	statistics	on	unfiltered	abundance	reports	
with	no	abundance	threshold	(considering	all	classified	taxa	regardless	of	abundance)	

at	the	species	and	genus	levels	using	default	databases.	Related	to	Figure	3.		
	

	
	
	
	
	
	
	
	



Figure	S2.		Precision-Recall	curves	with	each	sample	as	a	separate	plot	for	
classifications	using	default	databases.	Related	to	Figure	3.		

	
	
	
	
	
	
	
	
	
	



Figure	S3.		Area	under	precision-recall	curve	(AUPR)	scores	for	each	classifier	for	
simulated	datasets	at	the	species	and	genus	ranks	using	both	the	default	and	RefSeq	

CG	databases.	Related	to	Figure	3.	
	

	
	
	
	
	
	
	
	



Figure	S4.		Area	under	precision-recall	curve	(AUPR)	scores	for	each	classifier	for	
CAMI	datasets	at	the	species	and	genus	ranks	using	both	the	default	and	RefSeq	CG	
databases.	MegaBLAST	and	MMseqs2	are	omitted	due	to	high	computational	runtime.	

Related	to	Figure	3.		
	
	

	
	
	
	
	
	
	



Figure	S5.		Proportion	of	abundance	classified	at	the	Species	rank	for	CAMI	dataset.	
Proportion	of	sample	abundance	classified	at	the	species	rank	with	default	databases	

and	using	uniform	RefSeq	CG	databases.	Related	to	Figure	5.		
	
	
	
	
	
	
	
	
	



Figure	S6.		L2	abundance	profile	norms	for	each	classifier	for	simulated	datasets	at	the	
species	and	genus	ranks	using	both	the	default	and	RefSeq	CG	databases.	For	L2	a	

lower	value	indicates	more	accurate	abundance	estimates.	Related	to	Figure	4.		
	

	
	
	
	
	
	
	
 



 
Figure	S7.		Proportion	of	simulated	hg38	reads	and	ATCC	Even	In-Vitro	NTC	sample	
reads	misclassified	to	non-metazoan	taxa	excluding	the	root	taxon.	Classifiers	that	

classified	less	than	one	in	a	million	reads	were	omitted.	Related	to	Figure	6.		
	
	
	
	
	
	



Figure	S8.		Number	of	species	classified	versus	minimum	abundance	threshold	
detected	in	ATCC	Even	sample	datasets.	The	truth	abundance	of	20	species	at	0.05	

abundance	each	is	depicted	as	the	black	dotted	line.	Related	to	Figure	6.		
 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



Figure	S9.		AUPR	for	three	variants	of	the	ATCC	Even	sample:	Simulated	DNA,	In-Vitro	
DNA,	and	In-Vitro	RNA	from	whole	cell	material.	Comparisons	are	made	across	default	
versus	Refseq	CG	databases	as	well	as	the	species	vs	genus	level.	The	classifiers	are	
ordered	according	to	their	average	AUPR	across	the	three	sample	variants.	Related	to	

Figure	6.		
 

	


